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Zeta functions of nearly circular domains

Andrei A Kvitsinsky†
Department of Physics, California State University, Long Beach, CA 90840, USA

Received 27 February 1996

Abstract. We study the zeta functionsζ(p; �) = ∑
i λ

−p

i of negative integer powers of
eigenvalues of the Laplacian on two-dimensional domains� which are close to the unit discD.
For p = 2, 3, . . ., closed-form expressions are obtained which describeζ(p; �) when� → D.
The technique developed is applied to derive an asymptotic expansion for zeta functions of
regularn-sided polygons in the limitn → ∞.

1. Introduction

This paper deals with spectral zeta functions

ζ(p; �) =
∑

i

λ
−p

i p = 2, 3, . . . (1)

of the Laplacian on a two-dimensional domain� with zero boundary condition on∂�.
Explicit formulas for such zeta functions, regarded as exact sum rules for the energy levels
of quantal systems, are of considerable interest in the theory of quantum billiards [1–7].
The benchmark is the circular billiard, with� being the unit discD. It is one of very
few examples where the zeta function can be calculated explicitly for any integerp > 2,
being reduced to the well known sum rules [8–13] for negative powers of zeros of Bessel
functions. Moreover, much deeper results on structure ofζ(p; D) in the complexp-plane
are known [11, 12, 14]. Aq-generalization of these results to discrete circular billiards
was obtained in [15, 16]. There are just two more exactly solvable cases where� is an
equilateral triangle or square [2]. In particular, no explicit formulae are known for zeta
functions of regularn-sided polygons withn > 5.

In this paper, we consider two-dimensional domains which in some sense are close to
the unit disc, so that the zeta function ofD provides first approximation forζ(p; �). The
goal is to obtain the main correction due to the deviation of� from D. As a result, we
get approximate formulae for spectral zeta functions of rather general domains which are
nearly circular. As a by-product, we also get a set of addition theorems for Bessel functions
which seems previously unknown.

A particular case of a nearly circular billiard which deserves special study is when�

is a regularn-sided polygonPn with arbitrary number of verticesn. We get asymptotic
expansions of the zeta functionsζ(p; Pn) in the limit n → ∞. They can also be regarded
as approximate formulae for finiten. Numerical comparison with the exact values of the
zeta functions of an equilateral triangle and a square shows that the approximation is quite
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good even forn = 3, 4 and therefore is expected to be very good for highern where no
exact formulae either for eigenvalues or zeta functions are known.

The main idea of our approach is due to a simple observation put forward in [1] and used
in [4] for the Aharonov–Bohm circular billiard: if there is a conformal mappingω : D → �,
the Green function of the Dirichlet problem on� is proportional to the corresponding Green
function of D with the coefficient|dω/dz|2. In our case, if� is close toD then∣∣∣∣dw

dz

∣∣∣∣2

= 1 + ε(z)

whereε is small. Evaluatingζ(p; �) as trace ofGp

� and expanding inε yields a perturbation
expansion forζ(p; �) where the leading term is the zeta function of the unit disc. The
next term∝ ε gives the main correction. In the case of a regularn-sided polygonPn, the
situation is slightly more complicated, for the mappingw : Pn → D has singularities at
vertices ofPn. Nevertheless, the general approach still works with some modifications.

Note that our technique and results are restricted to the case ofp = 2, 3, . . . . The
Green-function method cannot be extended to study the more complicated and interesting
case of complexp (the problem of particular importance is the analytic continuation of
ζ(p; �) to Rep 6 1).

We describe the main results of the paper in sections 2 and 3, leaving some long
derivations to subsequent sections.

2. General domains

Consider the Dirichlet problem

−19 = λi9 9|∂� = 0 (2)

on a simply connected compact domain� in the two-dimensional Euclidean plane with a
smooth boundary∂�. The zeta function (1) associated with the spectrum of the problem
(2) exists forp > 1 and can be analytically continued on the whole complex plane as a
meromorphic function ofp [17]. For integerp > 2, the zeta function is the trace

ζ(p; �) = tr G
p

� =
∫

ωi∈�

p∏
i=1

d2 ωi G�(ωi, ωi+1) ωp+1 = ω1 (3)

of the Green function of the problem (2)

−1ω G�(ω, ω′) = δ(ω, ω′) G�|∂� = 0

where� is regarded as a domain in the complexω plane.
Due to the Riemann mapping theorem, there exists a conformal mappingω(z) : D → �

of the unit discD onto � such that∂� is mapped on the unit circle∂D. The problem (2)
on � is equivalent to another problem onD

−1z 9 = λi

∣∣∣∣dω

dz

∣∣∣∣2

9 9|∂D = 0 .

Therefore, one can express the Green functionG� through the Green functionGD of the
Dirichlet problem on the unit disc:

G�(ω, ω′) = GD(z(ω), z(ω′))

wherez(ω) is the inverse ofω(z) andGD is given by Poisson’s kernel

GD(z, z′) = − 1

2π
ln

∣∣∣∣ z − z′

1 − z∗z′

∣∣∣∣ . (4)
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Evaluating the trace (3) in terms of the integral overD yields the following representation
for integerp > 2:

ζ(p; �) = tr G
p

� = tr

[∣∣∣∣dω

dz

∣∣∣∣2

GD

]p

=
∫

zi∈D

p∏
i=1

d2zi

∣∣∣∣dω

dz
(zi)

∣∣∣∣2 GD(zi, zi+1) (5)

wherezp+1 = z1.
This representation is the starting point of our analysis. In connection with quantum

billiards, it first appeared in [1] and later has been used in [4] to study the zeta functions
of the Aharonov–Bohm circular billiard.

Now, let � be a nearly circular domain. In terms of the mappingω it means that

|ω(z) − z| � |z| for z ∈ D .

Therefore ∣∣∣∣dω

dz

∣∣∣∣2

= 1 + ε(z) |ε(z)| � 1 for z ∈ D (6)

and equation (5) can be written as

ζ(p; �) = tr [(1 + ε)GD]p =
∫

zi∈D

p∏
i=1

d2zi [1 + ε(zi)] GD(zi, zi+1)

= ζ(p; D) + p tr
(
εG

p

D

) + O(ε2) . (7)

The first term is the zeta function of the unit disc.
Let us now recall some known results for the circular billiard. The eigenvalues of the

Dirichlet problem onD are zerosjmk of the Bessel functionsJm(x) so that

ζ(p; D) =
∞∑

m=−∞
ζ|m|(2p) ζm(2p) =

∞∑
k=1

j
−2p

mk . (8)

The corresponding eigenfunctions are (z = reiθ )

9mk(z) = [√
πJ ′

|m|(j|m|k)
]−1

eimθ J|m|(j|m|kr) . (9)

The zeta functionsζm(2p) can be calculated explicitly for anyp = 1, 2, . . . via a recurrence
procedure [10]. Lists of them are given in [8, 14]:

ζm(2) = 1

4(m + 1)

ζm(4) = 1

24(m + 1)2(m + 2)

ζm(6) = 1

25(m + 1)3(m + 2)(m + 3)

etc. Substituting these formulae into (8) enables one to evaluate the zeta functions of the
circular billiard explicitly:

ζ(2; D) = − 5
32 + 1

8 ζ(2)

ζ(3; D) = 1

29
[25+ 16ζ(3) − 24ζ(2)]

(10)

etc; ζ(p) stands for Riemann’s zeta function.
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We now proceed to evaluate the second term of (7). First, we obtain a representation
for tr

(
ε G

p

D

)
in terms of the eigenfunctions (9) of the circular billiard by making use of the

spectral decomposition ofGD

GD(z, z′) =
∞∑

m=−∞

∞∑
k=1

9mk(z)9
∗
mk(z

′)
j2
|m|k

(11)

which yields

tr
(
ε G

p

D

) =
∞∑

m=−∞

∞∑
k=1

1

j
2p

|m|k
〈9mk|ε|9mk〉 .

Evaluating the matrix element in polar coordinates by making use of (9) gives the following
result.

Theorem 1.For p = 2, 3, . . .

tr
(
ε G

p

D

) =
∫ 1

0
ε0(x)gp(x) dx (12)

where

ε0(x) = 1

2π

∫ 2π

0
ε
(√

xeiθ
)

dθ (z = √
xeiθ ) (13)

and

gp(x) =
∞∑

m=0

(2 − δm0)Sm(x; p) Sm(x; p) =
∞∑

k=1

J 2
m

(
jmk

√
x
)

j
2p

mk

[
J ′

m(jmk)
]2 . (14)

The main complications in equation (12) reside in calculating functionsgp. They can
be evaluated explicitly for any integerp > 2 by a method similar to the derivation of the
Kneser–Sommerfeld expansion [9]. The corresponding technique is described in section 4.
For p = 2, 3 the results are

g2(x) = − (1 − x)2

8x
ln(1 − x)

g3(x) = (1 − x)2

128x

[
4L(x) − 4x − 1 − (1 − x)(1 + 3x)

ln(1 − x)

x

] (15)

where

L(x) =
∞∑

m=1

xm

m2
= −

∫ x

0
ln(1 − t)

dt

t
.

For arbitraryp this function is given by the sum (14) where each term is calculated as
follows.

Theorem 2.For p = 2, 3, . . . andm = 0, 1, . . .

Sm(x; p) =
(

−1

4

)p p−1∑
k=0

cp−1−k(m, x)
[
ak(m, x) + (−1)kbk−m(m, x)

]
(16)

where the functionscl are given by the recurrence relations

c0(m, x) = 1

ck(m, x) = m!

k!(m + k)!
xk −

k−1∑
l=0

m!

(k − l)!(k − l + m)!
cl(m, x) k > 1 .

(17)
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The functionsak are defined by

ak(m, x) = (1 − δm0)

min(k,m−1)∑
s=0

(−1)s(m − s − 1)!

s!(k − s)!(k − s + m)!

[
xk−s+m − xs

]
(18)

and

bs(m, x) = 0 s < 0 (19)

bs(m, x) = (−1)s xm
s∑

k=0

xk ln x + hmk

(
xs−k − xk

)
k!(k + m)!(s + m − k)!(s − k)!

s > 0 (20)

where

hmk =
m+k∑
l=1

1

l
+

k∑
l=1

1

l
.

In section 4 we give explicit expressions for the first few components of the sum (16).
Equations (12), (14) and (16) provide a direct way of evaluating the main correction to

zeta functions of almost circular domains. Let us consider a typical example.
Let the boundary∂� of � be described in the polar coordinatesz = r eiθ by the equation

r = 1 + αϕ(θ) α � 1 . (21)

Then the mappingω : D → � to leading order inα is given by

ω(z) = z + α
z

2π

∫ 2π

0

eiθ + z

eiθ − z
ϕ(θ) dθ + o(α) . (22)

This representation is obtained in [18] via a perturbation expansion for the Green function. It
allows one to calculate the leading term of the functionε(z) of (6), and the leading correction
(12) to the zeta function for any givenϕ(θ) describing the boundary. For instance, ifϕ(θ)

is a Fourier series

ϕ(θ) =
M∑

k=−M

ϕk eikθ ϕ−k = ϕ∗
k

then equation (22) yields

ω(z) = z + αz

[
ϕ0 + 2

M∑
k=1

ϕk zk

]
+ o(α)

so that

ε(z) = 2α

[
ϕ0 +

M∑
k=1

(k + 1) Re(zkϕk)

]
.

Calculating the integral (13) yieldsε0(x) = 2αϕ0 . Thus, according to (7) and (11) we have

ζ(p; �) = (1 + 2αpϕ0)ζ(p; D) + O(α2) . (23)

This very simple formula describes the leading correction to the zeta function due to a small
perturbation (21) of the circular boundary.

A particular example is nearly circular ellipse of half axes 1+ α and 1:

x2 + (1 + α)2 y2 6 (1 + α)2 .

Its boundary is described by (21) withϕ(θ) = cos2 θ , so thatϕ0 = 1
2 and

ζ(p; ellipse) = (1 + αp)ζ(p; D) + O(α2) .
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The asymptotics (23) are valid for billiards with smooth boundaries. If the boundary has
cusps, vertices, etc, the functionϕ(θ) and the mapping functionω(z) have singularities and
the above approach should be modified. An important instance is the billiard on a regular
n-sided polygon which we now proceed to study.

3. Regular n-sided polygons

Consider the Dirichlet problem (2) where� is a regularn-sided polygonPn (n =
3, 4, . . .) inscribed within the unit circle, so that the vertices ofPn are the roots of unity
exp(2πl/n), l = 0, 1, . . . , n − 1.

As in the limit n → ∞ Pn tends to the unit disc, it is natural to expect that
ζ(p; Pn) → ζ(p; D). However, the asymptotics (23) are not valid, because the polar
equation of the boundary ofPn cannot be expressed in the form (21) with a smooth function
ϕ(θ).

We begin investigatingζ(p; Pn) along the same way as in the previous section. The
mapping functionω : D → Pn is well known:

ω(z) = γn

∫ z

0
(1 − tn)−2/n dt (24)

whereγn is fixed by the conditionω(1) = 1 (one of the vertices ofPn is at z = 1):

γn =
[∫ 1

0
(1 − tn)−2/n dt

]−1

= 0(1 − 1/n)

0(1 + 1/n)0(1 − 2/n)
. (25)

Thus ∣∣∣∣dω

dz

∣∣∣∣2

= γ 2
n

∣∣1 − zn
∣∣−4/n = γ 2

n

[
1 − 2rn cosnθ + r2n

]−2/n
z = reiθ .

This expression can be rewritten by making use of the generating function for the
Gegenbauer polynomials

(1 − 2xz + z2)−ν =
∞∑

k=0

C
(ν)
k (z) xk

in the form ∣∣∣∣dω

dz

∣∣∣∣2

= γ 2
n [1 + ε(z)] (26)

where

ε(z) =
∞∑

k=1

C
(2/n)

k (cosnθ) rnk . (27)

As n → ∞, this function is exponentially small everywhere inside the unit disc,|ε(z)| ∝
r−n, r < 1, and can be treated as a perturbarion. Then equation (5) yields

ζ(p; Pn) = γ 2p
n tr[(1 + ε) GD]p = γ 2p

n [ζ(p; D) + p tr(ε G
p

D) + O(ε2)] .

The term tr(ε G
p

D) is described by (12) with

ε0(x) = 1

2π

∫ 2π

0
dθ

∞∑
k=1

C
(2/n)

k (cosnθ) xnk/2 =
∞∑

s=1

(2/n)2
s

(s!)2
xns (28)

where

(a)0 = 1 (a)s = a(a + 1) · · · (a + s − 1) for s > 1
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and use has been made of the Fourier expansion for the Gegenbauer polynomials [19]

C
(ν)
k (cosθ) =

k∑
l=0

(ν)l(ν)k−l

l!(k − l)!
exp{−i(k − 2l)θ} . (29)

Clearly,ε0(x) is exponentially small asn → ∞ for x < 1 while being∝ n−2 at x = 1:

ε0(1) =
∞∑

s=1

(2/n)2
s

(s!)2
∼ 4

n2

∞∑
s=1

1

s2
as n → ∞ .

Hence, main contribution to the integral (12) comes from a small vicinity of the upper limit
x = 1 which corresponds to the boundary of the unit disc where the mapping (24) has
singularities at vertices ofPn. That is why one can replace the functiongp by its leading
term asx → 1. ExpandingJm(jmk

√
x) in (14) atx = 1 gives

gp(x) = 1

4
(1 − x)2

∞∑
m=−∞

∞∑
k=1

j
2(1−p)

|m|k (1 + o(1))

= 1

4
(1 − x)2 ζ(p − 1; D) (1 + o(1)) . (30)

This representation is valid only forp > 3. Forp = 2 it breaks down, sinceζ(z; D) has a
pole atz = 1. That is why this case needs a special treatment and will be dealt with later.

Upon making use of equations (28) and (30) in (12), forp > 3 we have

tr(ε G
p

D) =
∫ 1

0
ε0(x) gp(x) dx

∼ 1

4
ζ(p − 1; D)

∞∑
s=1

(2/n)2
s

(s!)2

∫ 1

0
xns(1 − x)2 dx

= 1

2
ζ(p − 1; D)

∞∑
s=1

(2/n)2
s

(s!)2(ns + 1)(ns + 2)(ns + 3)
.

Using the asymptotics (n → ∞)

(2/n)s ∼ 2

n
(s − 1)! for s > 1 (31)

we get

tr(ε G
p

D) = 2

n5
ζ(5) ζ(p − 1; D) + o(n−5)

whereζ(m) is the Riemann zeta function,ζ(m) = ∑∞
k=1 k−m. Thus, we arrive at

Theorem 3.For p = 2, 3, . . . the zeta functionζ(p; Pn) has the following asymptotics as
n → ∞:

ζ(p; Pn) = γ 2p
n

{
ζ(p; D) + 2p

n5
ζ(5) ζ(p − 1; D) + o(n−5)

}
(32)

whereγn is given by (25).

These asymptotics are not valid forp = 2. In this case the result is as follows.
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Theorem 4.The asymptotics of the zeta functionζ(2; Pn) in the limit n → ∞ are of the
form

ζ(2; Pn) = γ 4
n

{
ζ(2; D) + 2ζ(5)

ln n

n5
+ d

n5
+ o(n−5)

}
(33)

where

d =
(

2γ − 3 + 16

405

)
ζ(5) + 2

∞∑
k=2

ln k

k5
(34)

andγ is Euler’s constant,γ = 0.5772. . . .

We prove this theorem in section 5. Note that the logarithmic term of (33) is directly
related to the logarithmic singularity atx = 1 of the corresponding functiong2 in (15). For
p > 3 behaviour ofgp(x) as x → 1, described by (30), is smoother, for the series (14)
converge faster. That is why in this case the asymptotics (32) do not have a logarithmic
correction.

Note that asn → ∞
γn = 1 − π2

3n2
+ O(n−3)

so that main correction to the zeta function of the circular billiard in (32) and (33) comes
from the normalization factorγn of the mapping (24).

The asymptotics (32) and (33) can be used to estimate zeta functions of regularn-sided
polygons withn > 5 for which there are no exact formulae. The first-order approximation
is

ζ (0)(p; Pn) = γ 2p
n ζ(p; D) p = 2, 3, 4, . . . (35)

where all corrections∝ n−5 in (32) and (33) are neglected. The second approximation takes
them into account. For instance, forp = 2 it is

ζ (1)(2; Pn) = γ 4
n

{
ζ(2; D) + 2ζ(5) n−5 ln n + d

n5

}
(36)

whered is defined in (34).
In order to check how reasonable these approximations may be expected to be for

finite n, let us compare them with known exact formulae for an equilateral triangle and a
square. They were obtained in [2] by a direct evaluation making use of explicit expressions
for the eigenvalues of the corresponding Dirichlet problems:

ζ(p; Pn) =
( a

π
αn

)2p [
ζ(p)Ln(p) − ζ(2p)

]
n = 3, 4 (37)

wherea is the side length,ζ(m) is the Riemann zeta function,α3 = 3
4, α4 = 1 and

L3(p) =
∞∑

m=0

[
1

(3m + 1)p
− 1

(3m + 2)p

]

L4(p) =
∞∑

m=0

(−1)m

(2m + 1)p
.

In our case, the side lengths are fixed by the condition that the triangle and square are
inscribed within the unit circle, so thata = √

3 for P3 anda = √
2 for P4.

Table 1 gives results forζ(2; Pn) obtained by the approximate formulae (35), (36) and
compares them with the exact values forn = 3, 4. Surprisingly, both approximations, and
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Table 1. Zeta functionζ(2; Pn) of regularn-sided polygons. Exact values forn = 3, 4 are
given by (37). The approximationsζ (0) andζ (1) are defined by (35) and (36). Then = ∞ entry
is the value ofζ(2; D) from (10).

n Exact (10−2) ζ (1) (10−2) ζ (0) (10−2) γn

3 0.593 06. . . 0.5264 0.5068 0.5661
4 1.742 67. . . 1.7061 1.6710 0.7628
5 2.6204 2.5948 0.8515
6 3.2340 3.2180 0.8985
7 3.6459 3.6361 0.9264
8 3.9300 3.9240 0.9442
9 4.1322 4.1284 0.9563

10 4.2804 4.2779 0.9648
11 4.3918 4.3901 0.9711
12 4.4775 4.4763 0.9758
13 4.5447 4.5438 0.9795
14 4.5983 4.5976 0.9824
15 4.6417 4.6412 0.9847
16 4.6773 4.6770 0.9866
17 4.7069 4.7066 0.9881
18 4.7317 4.7315 0.9895
19 4.7528 4.7526 0.9906
20 4.7707 4.7706 0.9915

∞ 4.936 68. . . 1

especiallyζ (1), work fairly well even for the lowestn, being already within 10% of the
exact value for the triangle. The agreement rather improves for the square. Thus, one may
expect that the approximations (32) and (36) give rather accurate estimates for the zeta
functionsζ(p; Pn) of a regularn-sided polygon withn > 5 where no exact formulae are
known.

We also note that the difference between the two approximations (due to the terms
∝ n−5 in (36)) decreases very fast with increase ofn, and is very small already forn = 6.
The main difference betweenζ(p; Pn) at finite n and its limiting valueζ(p; D) is due to
the scaling factorγn of the mapping (24). As can be seen from table 1,ζ(p; Pn) reaches
the limit very slowly. This is due to the slow convergenceγn → 1.

4. New addition theorems for Bessel functions

In this section we study the sums (14) and obtain equations (15) and other related results.
The starting point of our approach resembles the derivation of the Kneser–Sommerfeld

expansion for Bessel functions [9]. For 06 x 6 1 andm > 0, consider the function

fm(z, x) = H(1)
m (xz)H (2)

m (z) − H(1)
m (z)H (2)

m (xz)

= 2i [Jm(z)Ym(xz) − Jm(xz)Ym(z)] (38)

and the integral

I = 1

2π i

∮
CR

fm(z, x)
Jm(xz)

Jm(z)

dz

z2p−1
p = 2, 3, . . . (39)

over a circle of radiusR around the origin. Using the relations (λ > 0)

Jm

(
λe±iπ

) = (−1)mJm(λ) Ym

(
λe±iπ

) = (−1)m[Ym(λ) ± 2iJm(λ)]
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it can readily be seen thatfm

(
λe±iπ , x

) = fm(λ, x) for λ > 0, so thatfm(z, x) is an analytic
function ofz on the wholez plane. Thereby, the functionfm(z, x)Jm(xz)/Jm(z) is bounded
on CR when 06 x 6 1, so that the integral (39) vanishes asR → ∞. The integrand has
simple poles atz = ±jmk and a pole atz = 0. As the integrand of (39) is an even function
of z, we get

2
∞∑

k=1

Res

[
fm(z, x)Jm(xz)

z2p−1Jm(z)
; z = jmk

]
+ Res

[
fm(z, x)Jm(xz)

z2p−1Jm(z)
; z = 0

]
= 0 . (40)

Equation (38) yields

fm (jmk, x) = −2iJm (jmkx) Ym (jmk)

= −2i
Jm (jmkx)

J ′
m (jmk)

[
Ym (jmk) J ′

m (jmk) − Jm (jmk) Y ′
m (jmk)

]
= 4iJm (jmkx)

πjmkJ ′
m (jmk)

where the expression in square brackets is the Wronskian

W {Ym(x), Jm(x)} = −2/(πx) .

Therefore

Res

[
fm(z, x)Jm(xz)

z2p−1Jm(z)
; z = jmk

]
= 4i J 2

m (jmkx)

j
2p

mk

[
J ′

m (jmk)
]2

and equation (40) yields

Sm(x2; p) ≡
∞∑

k=1

J 2
m (jmkx)

j
2p

mk

[
J ′

m (jmk)
]2 = π i

8
Res

[
fm(z, x)Jm(xz)

z2p−1Jm(z)
; z = 0

]
. (41)

This equation provides a direct way to calculate the sumsSm for any integerp > 1.
We now proceed to evaluate the residue in (41). Consider first the functionfm(z, x) as

z → 0. Upon substituting into (38) the expansions of the Bessel functions in powers ofz,
a straightforward calculation yields

fm(z, x) = 2i

π
x−m

∞∑
k=0

(
z2

4

)k [
(−1)kak(m, x2) + bk−m(m, x2)

]
(42)

where the coefficientsak andbk are defined in (18) and (19). A similar calculation gives

Jm(xz)

Jm(z)
= xm

∞∑
k=0

(
−z2

4

)k

ck(m, x2) (43)

where the coefficientsck are defined by the recurrence (19). To complete evaluating the
residue in (41), we have to calculate the term∝ z2p−2 of the product of the series (42) and
(43). This gives equation (16) for sumsSm(x; p) which can be regarded as a set of new
addition theorems for Bessel functions.

Explicit expressions for the first few coefficients of the sum (16) can readily be obtained:

c0(m, x) = 1

c1(m, x) = x − 1

m + 1
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c2(m, x) = x − 1

2(m + 1)(m + 2)

[
x − 1 − 2

m + 1

]
...

a0(m, x) = 1 − δm0

m
(xm − 1)

a1(m, x) = 1 − δm0

m

[
xm+1 − 1

m + 1
− (1 − δm1)

xm − x

m − 1

]

a2(m, x) = 1 − δm0

2m

[
xm+2

(m + 1)(m + 2)
+ 2(1 − δm1)

x − x2m+1

m2 − 1

+ (1 − δm1)(1 − δm2)

(m − 1)(m − 2)
(xm − x2)

]
...

b0(m, x) = xm ln x

(m!)2

b1(m, x) = − xm

m!(m + 1)!

[
(1 + x) ln x + m + 2

m + 1
(1 − x)

]

b2(m, x) = xm

m!(m + 2)!

{[
1

2
(1 + x)2 + x

m + 1

]
ln x + 1 − x2

2

[
1

m + 1
+ 1

m + 2
+ 3

2

]}
...

Substituting these expressions in (16) leads to the following results for the sumsSm(x; p)

with p = 1, 2, 3:
(i) p = 1:

∞∑
k=1

J 2
m

(
jmk

√
x
)

j2
mk

[
J ′

m (jmk)
]2 = −1

4
ln x m = 0

= 1 − xm

4m
m = 1, 2, . . . .

(ii) p = 2:

∞∑
k=1

J 2
m

(
jmk

√
x
)

j4
mk

[
J ′

m (jmk)
]2 = 1

8
[1 − x + x ln x] m = 0

= 1

16
[x(x − 1) − x ln x] m = 1

= 1

8(m + 1)

[
xm+1

m
− xm

m − 1
+ x

m(m − 1)

]
m = 2, 3, . . . .
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(iii) p = 3:
∞∑

k=1

J 2
m

(
jmk

√
x
)

j6
mk

[
J ′

m (jmk)
]2 = − 1

256
[6x2 ln x + (1 − x)(11x − 5)] m = 0

= x

256

[
4x ln x + 1

3
(1 − x)(5x + 7)

]
m = 1

= − x2

256

[
ln x + 1

18
(1 − x)(25− 7x)

]
m = 2

= − xm

64m(m + 1)2

[
2m + 3

m + 2
x2 − 4m

m − 1
x + m(2m + 5)

m2 − 4

]

+ 3x2

32m(m2 − 1)(m2 − 4)
m = 3, 4, . . .

These formulae are the first members of the infinite set of addition theorems for the Bessel
functions generated by equation (16).

Substituting the above expressions forp = 2, 3 into the definition (14) of the functions
gp yields equations (15). Forp = 1, the sum overm in (14) diverges. This is another
illustration of singularity of the zeta functionζ(p; D) at p = 1.

5. The asymptotics ofζ(2; Pn)

In this section we prove equation (33). Whenp = 2, equations (5) and (26) yield

ζ(2; Pn) = γ 4
n

{
ζ(2; D) + 2 tr(ε G2

D) + tr(ε GD ε GD)
}

. (44)

First, we calculate the term∝ ε by making use of equations (12), (28) and (15):

tr(ε G2
D) =

∫ 1

0
ε0(x) g2(x) dx = 1

8

∞∑
s=1

(2/n)2
s

(s!)2
I (ns)

where

I (k) = −
∫ 1

0
xk−1(1 − x)2 ln(1 − x) dx

=
∞∑
l=1

1

l

∫ 1

0
xk−1+l(1 − x)2 dx

=
∞∑
l=1

1

l

[
1

k + l
− 2

k + l + 1
+ 1

k + l + 2

]

= 2

k(k + 1)(k + 2)

k∑
l=1

1

l
− 2

(k + 1)2
+ 1

(k + 2)2
+ 1

(k + 1)(k + 2)
.

This yields the exact representation

tr(ε G2
D) = 1

4n

∞∑
s=1

(2/n)2
s

(s!)2s(ns + 1)(ns + 2)

{
ns∑
l=1

1

l
− 3

2
+ 1

ns + 1
+ 1

ns + 2

}
.
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Using the asymptotics (31) and

k∑
l=1

1

l
= γ + ln k + 1

2k
− 1

12k(k + 1)
+ · · ·

gives

tr(ε G2
D) = 1

n5

[
ζ(5) ln n +

(
γ − 3

2

)
ζ(5) +

∞∑
s=1

ln s

s5

]
+ O(n−6) . (45)

This describes the second term of (44) in the limitn → ∞.
We now proceed to evaluate the last term of (44)

tr(ε GD ε GD) =
∫

D×D

d2z1 d2z2 ε(z1)ε(z2) G2
D(z1, z2) . (46)

As follows from equation (28),ε(z) is exponentially small asn → ∞ for |z| < 1 but
vanish only as a negative power ofn on the boundary|z| = 1. Hence, main contribution
to the integral (46) asn → ∞ comes from a small vicinity of the boundaries|z1| = 1 and
|z2| = 1. Therefore, we can replace the Green function in (46) by its leading term when
both arguments are close to the boundary. As follows from (4), when|z1,2| → 1:

GD(z1, z2) ∼
(
1 − |z1|2

) (
1 − |z2|2

)
4π

∣∣1 − z∗
1z2

∣∣2 .

Upon writing this in polar coordinateszk = rkeiθk , k = 1, 2 and making use of the Fourier
expansion

(1 − x2)2

(1 − 2x cosθ + x2)2
=

∞∑
m=0

Gm(x) cosmθ

where

G0(x) = 1 + x2

1 − x2

G1(x) = 4x

1 − x2

Gm(x) = 2xm

[
2

1 − x2
+ m − 1

]
m > 2

we arrive at the representation

G2
D(z1, z2) ∼ 1

16π2
W(r1, r2)

∞∑
m=0

Gm(r1r2) cosm(θ1 − θ2)

where

W(r1, r2) = (1 − r2
1)2(1 − r2

2)2

1 − r2
1r2

2

.

We substitute this representation and (27) into (46) and evaluate the resulting angular
integrals by making use of∫ 2π

0
C

(ν)
k (cosnθ)eimθ = π

k∑
l=0

(ν)l(ν)k−l

l!(k − l)!

{
δn(k−2l),m + δn(k−2l),−m

}
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which follows from (29). As a result, one gets

tr(ε GD ε GD) ∼
∫ 1

0

∫ 1

0
dr1 dr2 W(r1, r2)

∞∑
s=0

Gns(r1r2)

×
∞∑

l1=δs0

∞∑
l2=δs0

r
n(s+2l1)+1
1 r

n(s+2l2)+1
2

(2/n)l1(2/n)l1+s(2/n)l2(2/n)l2+s

l1!(l1 + s)!l2!(l2 + s)!
(47)

= A(n) + B(n)

whereA stands for the contribution of all terms of this sum withs > 1 andB for that with
s = 0.

According to equation (31), main contribution toA comes from the terms with
l1 = l2 = 0 and is given by

A(n) ∼ 1

n2

∫ 1

0

∫ 1

0
dr1 dr2 W(r1, r2)

∞∑
s=1

1

s2
(r1r2)

2ns+1 Gns(r1r2) (48)

while using (31) for the terms of (47) withs = 0 yields

B(n) ∼ 4

n2

∫ 1

0

∫ 1

0
dr1 dr2 W(r1, r2)G0(r1r2)

∞∑
l1=1

r
nl1
1

l2
1

∞∑
l2=1

r
nl2
2

l2
2

. (49)

Again, the leading contribution to these integrals comes from the endpointsri = 1.
Introducing new variablesxi = 1 − r2

i , i = 1, 2 and expanding the integrand of (48) at
xi = 0 yields

A(n) ∼ 1

2n2

∞∑
s=1

1

s2

{
(ns − 1)I2

(
3

2
ns

)
+ 2I3

(
3

2
ns

)}
(50)

where

Im(λ) =
∫ 1

0

∫ 1

0
dx1 dx2

x2
1x2

2

(x1 + x2)m
exp{−λ(x1 + x2)} m = 2, 3 .

In the limit λ → ∞ one gets

Im(λ) = am λm−6 [1 + o(1)]

where

am =
∫ ∞

0

∫ ∞

0
dx1 dx2

x2
1x2

2

(x1 + x2)m
exp{−x1 − x2} .

Upon introducing the variablest1 = x1 +x2, t2 = x1 −x2 this integral is evaluated explicitly
to give

am =
∫ ∞

0
dt1 t−m

1 e−t1

∫ t1

0

(
t2
1 − t2

2

4

)2

dt2 = 1

30

∫ ∞

0
dt t5−m e−t

= 1
30 (5 − m)! .

Then equation (50) yields

A(n) =
(

2

3

)4
a2 + 3a3

2n5
ζ(5) + o(n−5) as n → ∞ .
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In a similar way one can show that the second term (49) is neglegible:B(n) = O(n−7)

asn → ∞. Therefore, we get the asymptotics

tr(ε GD ε GD) = 16ζ(5)

405n5
+ o(n−5) as n → ∞ .

Combining this with equation (45) in (44) yields (33).
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